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In connection with the invest igat ion of different  p r o c e s s e s  of explosive  t r e a t m e n t  of m a t e r i a l s  [1], 
in te res t  has recent ly  grown in the invest igat ion of col l is ions between solids,  pa r t i cu l a r ly  meta l s ,  at ve-  
loc i t ies  on the o r d e r  of s e v e r a l  hundred m e t e r s  p e r  second. New phys ica l  phenomena,  for  example ,  wave 
formatic)n on the contact  su r f aces ,  a r e  obse rved  in the case  of oblique col l is ions when the contact point 
moves  along the contact  su r f aces  at a definite veloci ty .  Hydrodynamic models ,  which are  surveyed  in [1], 
a re  used fo r  the theore t i ca l  invest igat ions .  The me ta l s  a re  hence cons idered  ideal fluids, s im i l a r  t o p r o b -  
l e m s  about cumula t ion  [2]. The use of hydrodynamic  computat ional  schemes  p e r m i t s  computat ion of the 
magnitude of the p r e s s u r e  in the neighborhood of the contact  point; the computed values obtained are  used 
in va r ious  p r o b l e m s  of explosive welding [1]. At the s ame  t ime,  the invest igat ions of some new phenomena 
d isc losed  the inadequacy of using a hydrodynamic  model;  in pa r t i cu la r ,  the re  a re  foundations to a s su me  
that  the magnitude of the tengent ia l  s t r e s s e s  and the t ime of the i r  exis tence  play a substant ia l  role  in p r o c -  
e s s e s  a s soc ia t ed  with the change in me ta l  p r o p e r t i e s  nea r  the col l is ion zone. 

An a t tempt  is made in this p a p e r  to invest igate  the o ther  ex t r eme  case  as compared  to the hydro-  
clynamie model ,  to cons ide r  the p r o b l e m  of an oblique col l is ion between p la tes  within the f r a m e w o r k  o f  
l inear  e las t i c i ty  theory .  The single a t tempt  to use this approach in explos ive-welding p r o b l e m s  which is 
known to us is the p a p e r  [3], in which the solution of the p rob l em of col l is ions in an e las t ic  formula t ion  is 
used to c la r i fy  the w a v e - f o r m a t i o n  p r o c e s s  during explosive welding. The thickness  of the colliding pla tes  
was hence cons idered  infinite, and the veloci ty  of the contact  point was a s sumed  g r e a t e r  than the velocity 
of longitudinal wave propaga t ion  in the m a t e r i a l .  The e las t ic  p rob l em will be cons idered  in tills pape r  in 
a substant ia l ly  m o r e  genera l  formula t ion .  

1 .  F O R M U L A T I O N  O F  T H E  P R O B L E M  

Let  two e las t ic  p la tes  move oppositely,  where  v 1 is the velocity of the upper  plate,  and v 2 is the ve -  
loci ty of the lower  plate ,  and the i r  d i rec t ions  a re  pe rpend icu la r  to the plate su r faces .  The p la tes  a re  
joined, as shown in Fig. 1, because  of the col l is ion.  To s impl i fy  the p rob lem,  let  us  cons ider  the p la tes  
to cons is t  of the s a m e  raa te r ia l  and to b e o f  the same  thickness  h, while the col l is ion is s y m m e t r i c a l .  The 
p la tes  can be cons idered  fiat  and to have constant  veloci t ies  equal to ~ and ~22, r e spec t i ve ly ,  f a r  to the 
right of the col l i s ion zone (see Fig. 1). It should be noted that the exis tence  of e las t ic  waves moving more  
rapidly  than the contact  zone and not being damped at g rea t  d is tances  is poss ib le  in ce r t a in  p la t e -co l l i s ion  
modes .  Such waves,  which originate during load motion along the sur face  of an e las t ic  f in i te - th ickness  
pla te ,  have been  studied in [4]. However ,  in this case  the plate  su r f aces  ear f r o m  the contact  zone can  be 
r ep resen ted  as v ibra t ing around ce r t a in  "pr incipal  su r f aces "  which move at ~he constant  veloci t ies  ~ and 

v-~. Hence, unless  s t ipulated otherwise,  the veloci ty of namely such "p r in -  

Fig. 1 

cipal  s u r f a c e s "  will be understood to be the plate velocity at infinity. 

Let us continue the inner  su r faces  of ~he p la tes  just  as is shown in 
Fig. 1. The i r  in te r sec t ion  in the plane of the sketch yie lds  the point 0, 
which we cal l  the contact  point.  The angle y fo rmed because  of tbe i n t e r -  
sec t ions  of the planes  wilI be cal led the col l is ion angle.  The magnitude 
of the contact -point  velocity V, when the hurling veloci t ies  a re  d i rec ted  
along the n o r m a l s  to the p la tes  and a re  equal in magnitude,  will be defined 
by the following express ion :  
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V = - [ ~ ]  = Iv~l v 0 (1.1) 
sin T/Z sin "~t2 -- sin T/2" 

It is convenient  to analyze the col l is ion p r o c e s s  in  a coordinate  s y s t e m  coupled to the contact  point.  
The or igin will be placed at the contact  point, and the x axis will be d i rec ted  along the b i sec t r ix  of the 
col l is ion angle.  To e l iminate  edge ef fec ts  f r o m  the p rob lem,  we shall  cons ide r  the p la tes  sufficiently long 
and the col l i s ion p r o c e s s  i t se l f  to be s ta t ionary .  

Let  us examine  the ease  mos t  c h a r a c t e r i s t i c  fo r  the ma jo r i ty  of explosive welding modes when the 
two pla tes  collide at h smal l  angle [1]. Under  the assumpt ion  of sma l lnes s  of the col l is ion angles,  the 
p rob l em about col l is ion can be solved without taking account any change in shape of the plate boundary.  
Let us cons ider  the upper  boundary to be the line y =h and the lower  to be the line y = - h ,  and the col l is ion 
angle to he r ep re sen t ed  by a sl i t  along the x axis  f r o m  the or ig in  to inf(uity. Such an ideal izat ion of the 
p rob l em under  cons idera t ion  in the ideal fluid scheme has been  examined in [1]. 

The boundary conditions and the conditions at infinity a re  wr i t ten  as follows: 

% . = ~ = 0 ,  (y=h,  - -  ~ < z < c o ) ,  (1.2) 
a~2=(h~=O, (y=O, O < x < ~ ) ,  

a2~=ar,=0, ( e=- -h ,  - - ~ o < x ~ ) ,  
u=0,  v=0,  (x=--oo),  (1.3) 

u=0,  v = - - v o c o s ? / 2 ,  ( x = ~ ,  y~0) ,  
u=0,  v = v  o cos ?/2, (x=~o, y~0) .  

Here  aik a re  the s t r e s s  t en s o r  components ,  and u, v a re  the components  of the d i sp lacement  veloci ty vec tor  
along the x and y axes ,  r e spec t ive ly .  The exis tence  of an in tegrable  s ingular i ty  for  both (rik and also u and 
v is a s sumed  at the contact  point. 

In o r d e r  to obtain the exp res s ions  fo r  the components  of the s t r e s s  t en so r  ~ k  and the d isp lacement  
veloci ty vec to r  u, v, let  us use  s c a l a r  (p and vec tor  ~b potent ia ls .  These  potent ia ls  sa t i s fy  the equations 

( i  K +~PV" t ~ . .~i.z + ~vz - (1.4) 

�9 ( t  OV'~O' ,  o ~ _  - - F j ~  + ~ -  o, 

where K and ~ are  the mul t i l a te ra l  c o m p r e s s i o n  and the shear  moduli,  and p is the density of the ma te r i a l .  

It follows f r o m  the f o r m  of (1.4) that  the p ic ture  of the Collision depends essen t ia l ly  on the magni -  
tude of the contact point veloci ty  V. ff th~s l a t t e r  exceeds  ~he longitudinal wave veloci ty c~=q'-{K + 4/3 ~) /p ,  
a s i tuat ion occurs  which it is na tura l  to call  supersonic  flow. In this case  the s y s t e m  (1.4) is hyperbol ic  
and admi ts  of seeking the solution by the method of cha r ac t e r i s t i c s .  The o ther  case  of in tersonic  motion 
or ig inates  when the veloci ty  V is l e s s  than the logitudinal wave veloci ty c 1 by g r e a t e r  than the t r a n s v e r s e  
wave veloci ty c2=4-P-~.  Under  this condition, the f i r s t  equation in (1.4) is el l ipt ic  and the second is 
hyperbol ic .  Finally, the l a s t  case ,  subsonic motion, is rea l ized  if the veloci ty V of the contact  point is 
l e s s  than the t r a n s v e r s e  wave veloci ty c 2. The s y s t e m  (1.4) is  e l l ipt ic  in this  col l is ion mode.  

2.  C O L L I S I O N  O F  P L A T E S  IN T H E  S U B S O N I C  M O D E  

Let us seek  the solution of the p rob l em posed above in the subsonic col l i s ion case  by the F o u r i e r  
method in combinat ion with the Wiener- -Hopf  method.  Let fl(k, y), f2(k, y) denote the Four i e r  t r a n s f o r m s  
of the potent ia ls  q~ and $, respec t ive ly ,  and le t  a ~ he the s t r e s s  acting on the in te r face  be tween the m a t e -  
r i a l s .  Moreover ,  let us introduce the notation 

0 

~" j .2~ (~) e,~xd~; (2.1) 

(k) = 2 ~ v (z, O)elkxdx; b (2.2) 
0 

V - - ;  4 ' 2~ " 

Solving (1.4) with the boundary conditions (1.2), we obtain the following expres s ions  for  the Four i e r  t r a n s -  
f o r m s  of the potent ia ls :  
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p (k) ~5 ash (k~lh) sh (kE~ (h - -  y)) --  (2.3) ]1 (k y) = - -  Vk'I (k) ' 

- -  ~ 5  ch (kkxh) ch (k~ 2 (h - -  y)) + ~x~25 ch (k~,2g)l; 
ip (k) 

]2 (k,  y) - -  ~iW]f2 1 (k)  [ -  ~12)~22 s h  (k~,:h) ch (k~,~ (h --  y)) + 

+ ~t~i~ ch (k~ h)sh (k~x(h - -  y)) + 5~x~'~ sh (k~g)]; 

I (k) = (5 ~ + ~lzi~[) sh (k~,~h) sh (kL~h) + 2 5 ~ , ~  - -  2 5 ~  ch (kL~h) ch (kL~h). 

Taking account  of the cont inui ty  of the s t r e s s e s  and ve loc i t i es  on the in te r face  be tween the m a t e r i a l s ,  we 
obtain  the Wiene r - -Hopf  equa t ion  

b (k) = 2i~ (5 -- 1) p (k) [~,~ sh (kL~h) ch (k~lh) --  6 ~ ch (kL~h) sh (k~xh)]. (2.4) (k) 

Now, le t  us t u rn  to an inves t iga t ion  of the ana ly t ic  p r o p e r t i e s  of  the funct ions  p(k) and b(k), defined 
by the in t eg ra l s  (2.1) and (2.2) in o r d e r  to  p rov ide  a poss ib i l i t y  f o r  the so lu t ion  of (2.4) f o r  the two unknown 
funct ions  p (k) and b (k) by the W i e n e r - H o p f  method .  

It is known f r o m  the t heo ry  of nons t a t i ona ry  e las t i c  waves  that  a load moving along the su r face  of an 
e l a s t i c  p la te  can rad ia te  an undamped e l a s t i c  wave with a phase  ve loc i ty  equal  to the load ve loc i ty .  Hence, 
if the load ve loc i ty  is l e s s  than the ve loc i ty  of  the Rayle igh  waves  in the m a t e r i a l ,  then the group ve loc i ty  
of  the rad ia ted  e l a s t i c  wave will  be g r e a t e r  than the phase  veloci ty ,  and c o n v e r s e l y  in the opposi te  ca se .  
In  the s t a t i ona ry  f o r m u l a t i o n  of this  p r o b l e m  this  m e a n s  that  in the mode  when the ve loc i ty  V of the con-  
tac t  point  is l e s s  than the ve loc i ty  c R of the Rayle igh  waves ,  the s t r e s s e s  in a s t r ip  f a r  in f ront  of the con-  
t ac t  point  a r e  bounded and osc i l l a te ,  while the s t r e s s e s  damp out exponent ia l ly  f a r  behind the c o n t a c t p o i n t  
as  they r ecede  f r o m  the or ig in ,  where  the exponent  of the exponent ia l  depends on the plate  th ickness .  In 
the mode fo r  which V > c R, the s i tua t ion  b e c o m e s  the r e v e r s e :  behind the contac t  point  t he re  is an undamped 
e l a s t i c  wave,  while the s t r e s s e s  damp out exponent ia l ly  ahead of the con tac t  point .  

It fol lows f r o m  the above that the in tegra l  (2.1) d e t e r m i n e s  the funct ion p{k) in a ha l f -p lane  Ira(K)<r/ 
where  r/> 0 in ca se  V <c  R, and depends on the ve loc i ty  of s t r e s s  damping at infinity.  The in teg ra l  (2.3), in 
turn,  d e t e r m i n e s  the funct ion b(k) in the ha l f -p lane  Ira(k) ->0 with the excep t ion  of s eve ra l  points  on the 
rea l  ax is .  T h e r e f o r e ,  the Wiene r - -Hopf  equa t ion  (2.4) is valid in some  s t r ip  of the plane k. Despite  the 
fac t  that  this s t r ip  does not comple t e ly  enc lose  the rea l  axis  of the complex  k plane,  (2.4) can be solved 
by the W i e n e r - H o p f  method,  s ince  s ingu la r  points  a re  succes s fu l l y  excluded f r o m  the des i r ed  s t r ip  of 
r egu la r i ty ,  in the case  of m e r o m o r p h i c  funct ions ,  by redef in ing the funct ions .  The foundat ion fo r  the p o s -  
s ibi l i ty  of solving the equa t ion  in the co l l i s ion  mode when c R <V < c 2 is c a r r i e d  out in an analogous  m a n n e r .  

Now, let  Zm, z j ' ,  k n denote,  r e spec t i ve ly ,  the roo t s  of the equat ions  

A(k)=~k~sh(k~,~h) .ch(kL~ h)--5~ch(k~h) sh(k~h)=0;  (2.5) 

B (k) = ~E2ch(kEzh)sh(kE~h)-- 5~sh (k)~h). ch(k)hh ) = 0; (2,6) 

in the uppe r  ha l f -p lane  of the complex  va r i ab le  k which does  not include the rea l  axis .  Let  z 0, z0', k 0 de-  
note the roo t s  of the c o r r e s p o n d i n g  equat ions  (2.5), (2.6), (2.7) on the rea l  axis .  Then  taking account  the 
r e s u l t s  ment ioned  above about the s ingu la r  points  on the r ea l  axis ,  we obtain  the fol lowing re la t ionsh ips  
f r o m  (2.4): 

co h 

p (k) m=l = --  b (k) 
k h c~ - -  cc 2 (6-- t) 1 - -  = pl(k), if  ~1~-~ > t ;  (2.8) 

5~ 

+ 
i -  k 

p(k) - h = - - b ( k )  =l ~ - ,  h 2 (5 -- i) = p~ (k), i~ ~ < t. ( ) (  ) ( ) k2 I I  1 - -  k - -  k z m ~ I I  + 

Here  pl(k) is an unknown en t i r e  funct ion,  and the symbol  f i  denotes  the infinite p roduc t  eva lua ted  ove r  

all the app rop r i a t e  roo t s  z m, kn. ~=l 
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Because of the assumption about the existence of an integrable singulari ty at the contact point, the 
functions p(k) and b(k) should decrease  to zero  in the i r  domain of definition as ~l _~o. At the same t ime 
the rat io between the infinite products  in (2.8) will not grow more  rapidly than an exponential for  large l kl. 
Considering the asymptotic  of the product of the function p(k)b(-k)  in the i r  domain of definition as [ k [ - - ~ ,  
it can be obtained that 

p(k~.-) ( i - -  1) Gk~ I f  ~'~--6~ 
C ) '  ( 2 . 9 )  

2 (a - t) c : ~  I/h , (6, - h 

b(k)-, (t + 0hi-T_  F  v ' 

as follows f rom (2.8). Then, using the Liouville theorem,  it can be proved that the function pl(k) is 

Pl (k) = (Clk + C~) e c,~ for ~k2 > 6~; (2.10) 
Pl (k) = C4e c.k for k1~, 2 < 6 ~. 

In o rde r  to determine the constants  C 3 and C~, the asymptotic  of the infinite products  in (2.8) must be 
investigated and then values must  be selected for  C 3 and C~ such that the asymptotic  of p(k) would have no 
oscil lat ing t e r m s  and would decrease  as [k[ _ o o  The values of the constants C2 and C a can be determined 
f rom the condition that the plate veloci t ies  fa r  in front of the contact points would eoual the hur l ingveloci t ies :  

v o cos (I'12) h (;~i 2 - -  6 ' )  ( 2 . 1 1 )  
C~ = C~ = --  6 -- t 

Let us note that if the integrals  (2.1) and (2.2) have an asymptot ic  fo rm of the type (2.9), then the 
s t r e s s e s  a~2 near  the contact point are  determined on the continuation of the slit by the relationship 

(12 ~ = 2~l~C~ko ]/r " ~*X~-- 6~ (2.12) 

and the elast ic  displacements  of the edges of the slit near  the origin will equal 

~v (h ~- ~) .~ (x,x,- ~'-) 

Let s t r e s s e s  of equal magnitude and opposite direct ion acting on a finite segment of length Al be applied 
to the slit edges at some t ime 

2i~tC~ko ./- )~,~-- 6 ~ 

As a resul t  of such a load the slit edges merge  and are  connected in such a way that the contact point is 
provis ional ly  displaced a distance Al f rom its previous  location. 
work equal to 

The applied loads, hence, pe r fo rm nonzero 

iJ V PCl2~m i 4 (6 -- t) ct2k02~ x__ dx = . 

0 

(2.13) 

It has therefore  been shown that the solution of (2.4) which contains the nonzero constant C 1 corresponds  
to the solution of the problem about the  coll is ion of e last ic  plates with energy absorption occuring at the 
contact  point. A small  plast ic  zone adjacent to the contact point, or  p rocesses  assoc ia ted  with surface 
friction, etc.,  can be such an "energy absorber"  in the actual explosive-welding p rocess .  Additional in- 
vestigations are  needed to determine the magnitude of the energy U which is lost during the welding of unit 
lengths of plates.  After  having determined the quantity U, the constant C 1 can be evaluated by using the 

relationship 

pCt2k 2 
U = - - -  (2.14) 

h ( h  - 

Such a method of finding the constant was used in [7] to determine the s t r e ss  intensity factor  near  the vertex 
of a s tat ionary c rack  in an infinite mater ia l .  

It is quite difficult to use (2.8) containing the infinite products;  however, the difficulties are diminished 
considerably if the ratio ),1/),2 is considered a rational number  n / l ,  where n and l are  a rb i t r a ry  positive 
odd numbers .  Then the roots of (2.5)- (2.7) are periodic,  and the infinite products  are  successful ly r e p r e -  
sented by gamma functions, namely:  if ~h, ~72 . . . . .  ~? l § [ ( -  r i /2)  +fl] are the roots of the equation 
A 0?n/X~h)= 0 in the str ip 0 > Im~?-~--(r/2), and fl is a real  number,  then the express ions  for  p (k) will be 

136 



p (k) ---- p%VShfi c o s  (T/2) 
~/2 F 

if  X~X 2 < 5 2-, then  

ff X1X2 < 62, then  

2 
V~ (~"-~?) 

l+n--/~ 

�9 k n:~ ] ~'=t  

�9 , i v  I �9 i k k ~ h ~  

~hhlr{~_2 % ~hh]; (2.~5) r ( 2 ' ~  J nn / L '-d-'--,~H-,~ ] 

(. 2C~pk 
O (k) \pvoV'h cos (V/2) _rj~,~-~ ~ ~ r(,~ 2,~ 

Yl 
(k) = ~ ec,h 

Inves t iga t ing  the a sympto t i c  b e h a v i o r  of the funct ion (2.1) f o r  l a r g e  [k l ,  it can  be noted that the func-  
t ion  p(k) has a p o w e r - l a w  type a s y m p t o t i c  only if 

Ca ~ Ca ~__ i () ' I  "-~ ;L=) in 2 

T h e r e f o r e ,  we not only r educed  the f o r m u l a  defining p(k) to a m o r e  convenient  fo rm;  but a l so  eva lua ted  the 
va lues  of the cons tan t s  C~ and C~, 

3. INVESTIGATION OF SOLUTIONS IN THE SUBSONIC COLLISION CASE 

The recovery of the potentials ~, r from their Fourier transforms (2.3) can be done by numerical 
inversion of the Fourier transforms. However, a qualitative picture of the flow and an analysis of the other 
stresses in the neighborhood of the contact point can be obtained directly from (2.3) and (2.1). 

One of the m o s t  e s s e n t i a l  qual i ta t ive  d i s t inc t ions  of  pla te  co l l i s ions  in an e las t i c  f o r m u l a t i o n  f r o m  
the hyd rodynamic  mode l  p r e s e n t e d  in [1] is tha t  the s t r e s s e s  and d i s p l a c e m e n t s  in the e l a s t i c  p r o b l e m  a re  
o s c i l l a t o r y  a long the x axis  at infinity,  This  is a s soc i a t ed  with a r e s o n a n c e  phenomenon  in which the load 
moving  at a ve loc i ty  V along the su r f a c e  of an e l a s t i c  s t r ip  of th ickness  h g e n e r a t e s  a na tu ra l  e l a s t i c  wave 
with phase  ve loc i ty  equal  to the load ve loc i ty  in th is  p la te .  The p r e s e n c e  of e las t i c  s tanding waves  r e su l t s  
in the appea rance  of t ens i l e  s t r e s s e s  at some  d is tance  f r o m  the contac t  point .  Rupture  of  the connec t ion  
being f o r m e d  can  o c c u r  dur ing  exp los ive  welding when the magni tude  of the rup tur ing  s t r e s s e s i n  the butt  
is suff ic ient ly  high. This  phenomenon  is a p p a r e n t l y  re la ted  to the ex i s t ence  of an "upper  bound" to the we ld -  
ing domain  [9]. 

Now, let  us t u r n  to an inves t iga t ion  of the e las t i c  s t r e s s  field in the ne ighborhood  of the contac t  point.  
Using the r e a s o n i n g  tha t  the re  is just  one point  in the p r o b l e m  where  the s t r e s s e s  and d i sp l acemen t  ve loc -  
i t ies  can  have a s ingu la r i ty ,  the na ture  of this  s ingu la r i ty  can  be inves t iga ted  by using just  h igh - f r equency  
h a r m o n i c s  of the F o u r i e r  t r a n s f o r m a t i o n .  Consequent ly ,  we obtain  the fol lowing e x p r e s s i o n s  in p o l a r  c o -  
o r d i n a t e s :  

2Fa / i~,z~,, - -  / 6 ( 2 - - - 6 ~ - - - Z 2 ) t .  

2Fa n ( i~,1~,~ i5 = } 
ff22-- "-V-- ae  (tfeos (p~_ i~.lsin r P 1/-cos ~_~ i~,~sin q ~ ; 

2~a . ( i8~= , ~Sk s ] 
if1, "~ - -  ~ Im l~/cos ~ ~- i~,1 sin ~ - -  ]/cos qD q- i~.~ sin ~J; 

4 2 R i 
p --pVa i 3 c12 ~ / c o s ~ p - ~ i ~ a s i ~ '  

y(r)  = X. (1 - -  ~) r a  

V 

V-v-  r  ;.,;~ > 8,; 
a = r ~ i s ' - z , s , 3 V h - ~ , ~ "  ~f 

a = ,o cos (v/z) VT, I~.,~,,- a'l i i h h  < 8~ 
2 (6 = - -  ~,zX=} ~ ' 
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Fig. 2 Fig. 3 

Fig. 4 Fig. 5 

fo r  the s t r e s s  t enso r  components  aif, the p r e s s u r e  p =-(aii/3), and the d i sp lacements  y(r)  of the sli t  edges 
in the neighborhood of the contact  point. Curves  of the constant  d imens ion less  s t r e s s e s  all, a22, a12, and 

the p r e s s u r e  = | / - ~ v  ] a re  p resen ted  in Figs.  2-5,  respec t ive ly .  
. - T - /  

Let us note that the d isp lacement  y(r)  is negative for  a contact point velocity l ess  than the velocity 
of the Rayleigh wave in the ma te r i a l .  This  means  that the sli t  edges  switch about. There fore ,  the contact 
point cannot move at a constant  veloci ty l e s s  than the Rayleigh wave velocity.  The veloci ty of the contact  
point will apparent ly  p e r f o r m  some f luctui t ions  around a mean  value equal to V. 

A quanti tat ive c o m p a r i s o n  between the e las t ic  model  and i ts  hydrodynamic analog [1] can  be obtained 
by compar ing  the p r e s s u r e  intensity fac to r s  

lfl~-TZ, 
.V.hye r ' S r  - i 
Pela i -  4 c2 2 " 

3 ci 2 

The author  is gra teful  to A. A. Der ibas  and S. K. Godunov for  supervis ing  the r e sea rch ,  and L. I. 
Slepyan for  valuable comment s  and discuss ion.  
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